SWE 215: Software Requirements Engineering

Requirements Verification and
Validation

Dr. Jameleddine Hassine
ICS Department, KFUPM
jhassine@kfupm.edu.sa

Objectives

®»Reqguirements Risk Management

»\/alidation vs. Verification

®»Requirements V&YV Technigues:
®»Requirements Reviews
»Protoftyping

Requirements Risks

®» Requirements can be inadequate in many ways including:
®» |[naccurate or incomplete stakeholder identification
®» |nsufficient requirements validation and verification
®» |ncomplete, inconsistent or incorrect requirements
®» |[ncorrectly ranked requirements

®» Requirements risk management involves the proactive analysis,
identification, monitoring, and mitigation of any factors that can
threaten the integrity of the requirements engineering process.

Example of issues in Requirements

®» A set of requirements for an electric water heater conftroller.
» |f /0 ° <temperature <100 °, then the system shall output 3000 watts.
» |f 100 ° <temperature <130 °, then the system shall output 2000 watts.
» |f 120 ° <temperature <150 °, then the system shall output 1000 waftts.
» |f [50° <temperature, then the system shall output O watts.

®» The set of requirements is incomplete because the behavior for
temperature <0° is not defined.

®» The requirements are also inconsistent—for example, what happens
when temperature = 125 °¢

®» The requirements are also unclear because the temperatures given are
not specified as being in degree Fahrenheit or degree Celsius.

Requirements Verification and Validation (V & V)

®» Requirements validation and verification involves review, analysis,
and testing to ensure that a system complies with its requirements.

» Compliance pertains to both functional and nonfunctional
requirements.

» Requirements validation: “Are we building the right producte”
» Requirements verification: “Are we building the product rightg”

In other words, validation involves fully understanding customer
intent and verification involves satisfying the customer intent.

Verification and Validation (V & V)

» Validation

Goals,
v .
» Fnsures that the software being developed (or

changed) will satisfy its stakeholders ”a'ida““'{-.__
=»Checks the software requirements ";Hequimmems
pecification against stakeholders goals «|Specification”
and requirements |
= Verification Verification I '.
|
» Checks consistency of the software 4 Design

software development products (design,

requirements specification artefacts and other I .|
implementation, ...) against the specification

System d

Validation Objectives

» Certifles that the requirements document is an acceptable
description of the system to be implemented

®» Checks a reguirements document for:
Completeness and consistency
» Conformance to standards

®» Requirements conflicts
» Technical errors
®» Ambiguous requirements

Analysis and Validation

» Analysis works with raw requirements as elicited from the system
stakeholders

» “Have we got the right requirements?” is the key quesfion to be
answered at this stage

» Yalidation works with a final draft of the requirements document i.e.,
with negotiated and agreed requirements

= “Have we got the requirements right?” is the key question fo be
answered at this stage

Requirements V&V Techniques

1. Requirements Reviews/Inspections

2. Prototyping

Requirements Reviews

®» A group of people read and analyze the requirements, look for
problems, meet and discuss the problems and agree on actions
to address these problems

Distribute
documents

Prepare for Hold review
review meeting

Follow-up Revise

Plan review

Review Activities

= Plan review: The review team is selected and a time and place for the
review meeting is chosen.

» Distribute documents: The requirements document is distributed to the
review team members

= Prepare for review: Individual reviewers read the requirements to find
conflicts, omissions, inconsistencies, deviations from standards and other
roblems.

Hold review meeting: Individual comments and problems are discussed
and a set of actions to address the problems is agreed.

» Follow-up actions: The chair of the review checks that the agreed actions
have been carried out.

®» Revise document: The requirements document is revised to reflect the
agreed actions. At this stage, it may be accepted or it may be re-
reviewed

Pre-review checking

®» Reviews are expensive because they involve a number of people
spending tfime reading and checking the requirements document

® This expense can be reduced by using pre-review checking where one
person checks the document and looks for straightforward problems such
as missing requirements, lack of conformance to standards, typographical
errors, etc.

» Document may be returned for correction or the list of problems distributed
to other reviewers

Check document Check Check document Run
structure document agalnst automatic
completeness standards checkers

Requirements
document

3»-| Problem report

Review team membaership

» Reviews should involve a number of stakeholders drawn from
different backgrounds

» People from different backgrounds bring different skills and
knowledge to the review

Stakeholders feel involved in the RE process and develop an
understanding of the needs of other stakeholders

®» Review feam should always involve at least a domain expert and an
end-user

Review/Inspection checklists

» Understandability: Can readers of the document understand what the requirements mean?
» Redundancy: Is information unnecessarily repeated in the requirements document?

» Completeness: Does the checker know of any missing requirements or is there any information
missing from individual requirement descriptions?

» Ambiguity: Are the requirements expressed using terms which are clearly defined? Could readers
from different backgrounds make different interpretations of the requirements?

Consistency: Do the descriptions of different requirements include contradictions? Are there
contradictions between individual requirements and overall system requirements?

» (QOrganization: Is the document structured in a sensible way? Are the descriptions of requirements
organized so that related requirements are grouped?

» Conformance to standards: Does the requirements document and individual requirements
conform to defined standards? Are departures from the standards, justified?

» Traceability: Are requirements unambiguously identified, include links to related requirements and
to the reasons why these requirements have been included?

Example of a checklist for inspecting Use Case models

1. Actors
1.1. Are there any actors that are not defined in the use case model, that is, will the system
communicate with any other systems, hardware or human users that have not been described?
1.2. Are there any superfluous actors in the use case model, that is, human users or other systems that
will not provide input to or receive output from the system?
1.3. Are all the actors clearly described, and do you agree with the descriptions?
1.4. Is it clear which actors are involved in which use cases, and can this be clearly seen from the use
case diagram and textual descriptions? Are all the actors connected to the right use cases?

2. The use cases

2.1. Is there any missing functionality, that is, do the actors have goals that must be fulfilled, but that
have not been described in use cases?

2.2. Are there any superfluous use cases, that is, use cases that are outside the boundary of the
system, do not lead to the fulfillment of a goal for an actor or duplicate functionality described in other
use cases?

2.3. Do all the use cases lead to the fulfillment of exactly one goal for an actor, and is it clear from the
use case name what is the goal?

2.4. Are the descriptions of how the actor interacts with the system in the use cases consistent with the
description of the actor?

2.5. Is it clear from the descriptions of the use cases how the goals are reached and do you agree with
the descriptions?

Example of a Checklist for inspecting Use Case models

3. The description of each use case
3.1. Is expected input and output correctly defined in each use case; is the output from the
system defined for every input from the actor, both for normal flow of events and variations?
3.2. Does each event in the normal flow of events relate to the goal of its use case?
3.3. Is the flow of events described with concrete terms and measurable concepts and is it
described at a suitable level of detail without details that restrict the user interface or the design
of the system?
4. Are there any variants to the normal flow of events that have not been identified in the use
cases, that is, are there any missing variations?
3.5. Are the triggers, starting conditions, for each use case described at the correct level of
detail?
3.6. Are the pre- and post-conditions correctly described for all use cases, that is, are they
described with the correct level of detail, do the pre- and post conditions match for each of the
use cases and are they testable?

4. Relation between the use cases:
4.1. Do the use case diagram and the textual descriptions match?
4.2. Has the include-relation been used to factor out common behavior?
4.3. Does the behavior of a use case conflict with the behavior of other use cases?
4.4. Are all the use cases described at the same level of detail?

Prototyping

®» Prototypes for requirements validation demonstrate the
requirements and help stakeholders discover problems.

» \/alidation prototypes should be complete, reasonably efficient
and robust. [t should be possible to use them in the same way as
the required system.

» Jser documentation and training should be provided
Prototypes have different shapes and sizes:

®»From paper prototype of a computerized system to formal
executable models/specifications

= Horizontal, vertical
» Fvolutive, throwaway

Horizontal vs. Vertical Prototyping

= Horizontal Prototype: Provides a broad view of an enfire system or
subsystem, focusing on user interaction more than low-level system
functionality, such as database access. It is useful for:

®» Confirmation of user intferface requirements and system scope,

Develop preliminary estimates of development tfime, cost and
effort.

» Vertical Prototype: A more complete elaboration of a single subsystem
or function. It is useful for obtaining detailed requirements for a given
function, with the following benefits:

» Refinement database design,

» Clarify complex requirements by drilling down to actual system
functionality.

Throwaway vs. Evolutionary Prototyping

= Throwaway or Rapid Prototyping:

» Creation of a model that will eventually be discarded rather than
becoming part of the final delivered software.

® |t can be done quickly =2 quick feedback

Making changes early in the development lifecycle is extremely
cost effective

» Evolutionary Prototyping (also known as breadboard profotyping):

» Build a very robust prototype in a structured manner and
constantly refine it.

® To minimize risk, the developer does not implement poorly
understood features.

» Developers can focus on developing parts of the system that they
understand instead of working on developing a whole system.

Prototyping for Validation

Choose Develop
Execute Document
prototype tst |
testers] [s cenarios seenarios problems

(Document and extend prototype system)

Prototyping Validation Steps

=» Choose prototype testers

» The best testers are users who are fairly experienced and who are open-minded
about the use of new systems. End-users who do different jobs should be
involved so that different areas of system functionality will be covered.

= Develop test scenarios

» Careful planning is required to draw up a set of test scenarios which provide
broad coverage of the requirements. End-users shouldn’t just play around with
the system as this may never exercise critical system features.

Execute scenarios

» The users of the system work, usually on their own, to fry the system by executing
the planned scenarios.

=» Document problems

» |5 usually best to define some kind of electronic or paper problem report form
which users fill in when they encounter a problem.

User Manual development

» Writing a user manual from the requirements forces a detailed
requirements analysis and thus can reveal problems with the
document

®» [hformation in the user manual
Description of the functionalities

» How to get out of frouble
» How to install and get started with the system

Models V&V

» \Validation of system models is an essential part of the validation
pProcess

» Objectives of model validation
To demonstrate that each model is self-consistent

®|f there are several models of the system, to demonsirate that
these are internally and externally consistent

» o demonstrate that the models accurately reflect the real
requirements of system stakeholders

®» Some checking is possible with automated tools

Requirements Testing

» Fach requirement should be testable, i.e., it should be possible to
define tests 1o check whether or not that requirement has bbeen
met.

» |fiventing requirements tests is an effective validation technique as
missing or ambiguous information in the requirements description
may make it difficult to formulate tests.

= Each functional requirement should have an associated test

Test Case Definition

» \What usage scenarios might be used o check the requiremente

» Does the requirement, on its own, include enough information to
allow a test to be defined?

s it possible to test the requirement using a single test or are multiple
test cases required?

» Could the requirement be re-stated 1o make the test cases more
obvious?

Test Record Form

» The requirement’s identifier: There should be af least one for each
requirement.

» Related requirements: These should be referenced as the test may
also be relevant to these requirements.

» Test description: A brief description of the test and why this is an
opbjective requirements test. This should include system inputs and
orresponding outputs.

Requirements problems: A description of problems which made test
definition difficult or impossible.

» Comments and recommendations: These are advices on how to
solve requirements problems which have been discovered.

Key points

» Requirements validation should focus on checking the final draft of the
requirements document for conflicts, omissions and deviations from
standards.

» Reviews involve a group of people making a detailed analysis of the
requirements.

= Review costs can be reduced by checking the requirements before the
review for deviations from organizational standards.

Checklists of what to look for may be used to drive a requirements review
process.

= Prototyping is effective for requirements validation if a profotype has been
developed during the requirements elicitation stage.

» Designing tests for requirements can reveal problems with the requirements.
If the requirement is unclear, it may be impossible to define a test for it.

