
Requirements Verification and

Validation

Dr. Jameleddine Hassine

ICS Department, KFUPM

jhassine@kfupm.edu.sa

SWE 215: Software Requirements Engineering

Objectives
2

Requirements Risk Management

Validation vs. Verification

Requirements V&V Techniques:

Requirements Reviews

Prototyping

Requirements Risks
3

 Requirements can be inadequate in many ways including:

Inaccurate or incomplete stakeholder identification

Insufficient requirements validation and verification

Incomplete, inconsistent or incorrect requirements

Incorrectly ranked requirements

 Requirements risk management involves the proactive analysis,

identification, monitoring, and mitigation of any factors that can
threaten the integrity of the requirements engineering process.

Example of issues in Requirements
4

 A set of requirements for an electric water heater controller.

 If 70 ° <temperature <100 °, then the system shall output 3000 watts.

 If 100 ° <temperature <130 °, then the system shall output 2000 watts.

 If 120 ° <temperature <150 °, then the system shall output 1000 watts.

 If 150° <temperature, then the system shall output 0 watts.

 The set of requirements is incomplete because the behavior for

temperature <0° is not defined.

 The requirements are also inconsistent—for example, what happens

when temperature = 125 °?

 The requirements are also unclear because the temperatures given are
not specified as being in degree Fahrenheit or degree Celsius.

Requirements Verification and Validation (V & V)
5

 Requirements validation and verification involves review, analysis,

and testing to ensure that a system complies with its requirements.

Compliance pertains to both functional and nonfunctional

requirements.

 Requirements validation: “Are we building the right product?”

 Requirements verification: “Are we building the product right?”

 In other words, validation involves fully understanding customer

intent and verification involves satisfying the customer intent.

Verification and Validation (V & V)
6

 Validation

Ensures that the software being developed (or

changed) will satisfy its stakeholders

Checks the software requirements

specification against stakeholders goals

and requirements

 Verification

Checks consistency of the software

requirements specification artefacts and other

software development products (design,

implementation, ...) against the specification

Validation Objectives
7

Certifies that the requirements document is an acceptable

description of the system to be implemented

Checks a requirements document for:

Completeness and consistency

Conformance to standards

Requirements conflicts

Technical errors

Ambiguous requirements

Analysis and Validation
8

 Analysis works with raw requirements as elicited from the system
stakeholders

“Have we got the right requirements?” is the key question to be

answered at this stage

 Validation works with a final draft of the requirements document i.e.,
with negotiated and agreed requirements

“Have we got the requirements right?” is the key question to be

answered at this stage

Requirements V&V Techniques
9

1. Requirements Reviews/Inspections

2. Prototyping

Requirements Reviews
10

 A group of people read and analyze the requirements, look for

problems, meet and discuss the problems and agree on actions

to address these problems

Plan review
Distribute
documents

Prepare for
review

Hold review
meeting

Follow-up
actions

Revise
document

Review Activities
11

 Plan review: The review team is selected and a time and place for the

review meeting is chosen.

 Distribute documents: The requirements document is distributed to the
review team members

 Prepare for review: Individual reviewers read the requirements to find

conflicts, omissions, inconsistencies, deviations from standards and other

problems.

 Hold review meeting: Individual comments and problems are discussed

and a set of actions to address the problems is agreed.

 Follow-up actions: The chair of the review checks that the agreed actions
have been carried out.

 Revise document: The requirements document is revised to reflect the

agreed actions. At this stage, it may be accepted or it may be re-

reviewed

Pre-review checking
12

 Reviews are expensive because they involve a number of people

spending time reading and checking the requirements document

 This expense can be reduced by using pre-review checking where one
person checks the document and looks for straightforward problems such

as missing requirements, lack of conformance to standards, typographical

errors, etc.

 Document may be returned for correction or the list of problems distributed

to other reviewers

Requirements
document

Problem report

Check
document

completeness

Check document
against

standards

Check document
structure

Run
automatic
checkers

Review team membership
13

 Reviews should involve a number of stakeholders drawn from

different backgrounds

People from different backgrounds bring different skills and

knowledge to the review

Stakeholders feel involved in the RE process and develop an

understanding of the needs of other stakeholders

 Review team should always involve at least a domain expert and an

end-user

Review/Inspection checklists
14

 Understandability: Can readers of the document understand what the requirements mean?

 Redundancy: Is information unnecessarily repeated in the requirements document?

 Completeness: Does the checker know of any missing requirements or is there any information

missing from individual requirement descriptions?

 Ambiguity: Are the requirements expressed using terms which are clearly defined? Could readers

from different backgrounds make different interpretations of the requirements?

 Consistency: Do the descriptions of different requirements include contradictions? Are there

contradictions between individual requirements and overall system requirements?

 Organization: Is the document structured in a sensible way? Are the descriptions of requirements

organized so that related requirements are grouped?

 Conformance to standards: Does the requirements document and individual requirements

conform to defined standards? Are departures from the standards, justified?

 Traceability: Are requirements unambiguously identified, include links to related requirements and

to the reasons why these requirements have been included?

15

1. Actors

1.1. Are there any actors that are not defined in the use case model, that is, will the system

communicate with any other systems, hardware or human users that have not been described?

1.2. Are there any superfluous actors in the use case model, that is, human users or other systems that

will not provide input to or receive output from the system?

1.3. Are all the actors clearly described, and do you agree with the descriptions?

1.4. Is it clear which actors are involved in which use cases, and can this be clearly seen from the use

case diagram and textual descriptions? Are all the actors connected to the right use cases?

2. The use cases

2.1. Is there any missing functionality, that is, do the actors have goals that must be fulfilled, but that

have not been described in use cases?

2.2. Are there any superfluous use cases, that is, use cases that are outside the boundary of the

system, do not lead to the fulfillment of a goal for an actor or duplicate functionality described in other

use cases?

2.3. Do all the use cases lead to the fulfillment of exactly one goal for an actor, and is it clear from the

use case name what is the goal?

2.4. Are the descriptions of how the actor interacts with the system in the use cases consistent with the

description of the actor?

2.5. Is it clear from the descriptions of the use cases how the goals are reached and do you agree with

the descriptions?

Example of a checklist for inspecting Use Case models

16

3. The description of each use case

3.1. Is expected input and output correctly defined in each use case; is the output from the

system defined for every input from the actor, both for normal flow of events and variations?

3.2. Does each event in the normal flow of events relate to the goal of its use case?

3.3. Is the flow of events described with concrete terms and measurable concepts and is it

described at a suitable level of detail without details that restrict the user interface or the design

of the system?

3.4. Are there any variants to the normal flow of events that have not been identified in the use

cases, that is, are there any missing variations?

3.5. Are the triggers, starting conditions, for each use case described at the correct level of

detail?

3.6. Are the pre- and post-conditions correctly described for all use cases, that is, are they

described with the correct level of detail, do the pre- and post conditions match for each of the

use cases and are they testable?

4. Relation between the use cases:

4.1. Do the use case diagram and the textual descriptions match?

4.2. Has the include-relation been used to factor out common behavior?

4.3. Does the behavior of a use case conflict with the behavior of other use cases?

4.4. Are all the use cases described at the same level of detail?

Example of a Checklist for inspecting Use Case models

Prototyping
17

 Prototypes for requirements validation demonstrate the

requirements and help stakeholders discover problems.

 Validation prototypes should be complete, reasonably efficient

and robust. It should be possible to use them in the same way as

the required system.

 User documentation and training should be provided

 Prototypes have different shapes and sizes:

From paper prototype of a computerized system to formal

executable models/specifications

Horizontal, vertical

Evolutive, throwaway

Horizontal vs. Vertical Prototyping
18

 Horizontal Prototype: Provides a broad view of an entire system or

subsystem, focusing on user interaction more than low-level system

functionality, such as database access. It is useful for:

Confirmation of user interface requirements and system scope,

Develop preliminary estimates of development time, cost and

effort.

 Vertical Prototype: A more complete elaboration of a single subsystem

or function. It is useful for obtaining detailed requirements for a given

function, with the following benefits:

Refinement database design,

Clarify complex requirements by drilling down to actual system

functionality.

Throwaway vs. Evolutionary Prototyping
19

 Throwaway or Rapid Prototyping:

Creation of a model that will eventually be discarded rather than

becoming part of the final delivered software.

 It can be done quickly  quick feedback

Making changes early in the development lifecycle is extremely

cost effective

 Evolutionary Prototyping (also known as breadboard prototyping):

Build a very robust prototype in a structured manner and

constantly refine it.

 To minimize risk, the developer does not implement poorly

understood features.

Developers can focus on developing parts of the system that they

understand instead of working on developing a whole system.

Prototyping for Validation
20

Choose
prototype

testers

Document and extend prototype system

Develop
test

scenarios

Execute
scenarios

Document
problems

Prototyping Validation Steps
21

 Choose prototype testers

 The best testers are users who are fairly experienced and who are open-minded

about the use of new systems. End-users who do different jobs should be

involved so that different areas of system functionality will be covered.

 Develop test scenarios

Careful planning is required to draw up a set of test scenarios which provide

broad coverage of the requirements. End-users shouldn’t just play around with

the system as this may never exercise critical system features.

 Execute scenarios

 The users of the system work, usually on their own, to try the system by executing

the planned scenarios.

 Document problems

 Its usually best to define some kind of electronic or paper problem report form

which users fill in when they encounter a problem.

User Manual development
22

Writing a user manual from the requirements forces a detailed

requirements analysis and thus can reveal problems with the
document

 Information in the user manual

Description of the functionalities

How to get out of trouble

How to install and get started with the system

Models V&V
23

 Validation of system models is an essential part of the validation

process

Objectives of model validation

To demonstrate that each model is self-consistent

If there are several models of the system, to demonstrate that

these are internally and externally consistent

To demonstrate that the models accurately reflect the real

requirements of system stakeholders

 Some checking is possible with automated tools

Requirements Testing
24

 Each requirement should be testable, i.e., it should be possible to

define tests to check whether or not that requirement has been
met.

 Inventing requirements tests is an effective validation technique as

missing or ambiguous information in the requirements description

may make it difficult to formulate tests.

 Each functional requirement should have an associated test

Test Case Definition
25

What usage scenarios might be used to check the requirement?

 Does the requirement, on its own, include enough information to

allow a test to be defined?

 Is it possible to test the requirement using a single test or are multiple

test cases required?

Could the requirement be re-stated to make the test cases more

obvious?

Test Record Form
26

 The requirement’s identifier: There should be at least one for each
requirement.

 Related requirements: These should be referenced as the test may

also be relevant to these requirements.

 Test description: A brief description of the test and why this is an

objective requirements test. This should include system inputs and

corresponding outputs.

 Requirements problems: A description of problems which made test

definition difficult or impossible.

Comments and recommendations: These are advices on how to

solve requirements problems which have been discovered.

Key points
27

 Requirements validation should focus on checking the final draft of the

requirements document for conflicts, omissions and deviations from

standards.

 Reviews involve a group of people making a detailed analysis of the
requirements.

 Review costs can be reduced by checking the requirements before the

review for deviations from organizational standards.

 Checklists of what to look for may be used to drive a requirements review

process.

 Prototyping is effective for requirements validation if a prototype has been

developed during the requirements elicitation stage.

 Designing tests for requirements can reveal problems with the requirements.

If the requirement is unclear, it may be impossible to define a test for it.

