
Requirements Engineering Methods

Dr. Jameleddine Hassine
ICS Department, KFUPM
jhassine@kfupm.edu.sa

SWE 215: Software Requirements Engineering

Objectives

Traditional requirements methods

Understand the difference between traditional requirements
methods and agile requirements methods

2

Outline
Predictive, Waterfall-like Process
Problems with the Waterfall model
Requirements in iterative processes
 Spiral model
 Rapid Application Development (RAD)
 Rational Unified Process (RUP)

Agile methods
Requirements management in Agile processes
Agile optimizes ROI through Incremental Value Delivery

3

Predictive, Waterfall-Like Process

 Software development occurred in an orderly series of sequential stages
(Progress flows top to bottom, like a waterfall)

 Requirements were agreed to, a design was created, and code followed
thereafter. Lastly, the software was tested to verify its conformance to its
requirements and design

4

Requirements in the waterfall model:
the Iron Triangle (1)

 The “requirements box” implied that:

 There is a set of requirements that can be reasonably determined “up front”

 These requirements can be used as a basis to estimate the schedule and budget of the project.

5

More realistically:
Fixed resources
and cost

Requirements in the waterfall model:
the Iron Triangle (2)

 This “fixed requirements scope” assumption has indeed been found to be a root
cause of project failures.

“Scope management related to attempting waterfall practices was the single largest
contributing factor for failure.”

Study of 1,027 IT projects in the UK [Thomas 2001]
 Here’s the study’s conclusion:
“This suggests that...the approach of full requirements definition, followed by a long
gap before those requirements are delivered, is no longer appropriate. The high
ranking of changing business requirements suggests that any assumption that there
will be little significant change to requirements once they have been documented is
fundamentally flawed.”

6

Why the waterfall model is still amongst Us ?

 There are a number of understandable reasons:
The model was itself born as a fix to the “code it, fix-it, code-it- some-more-until-it’s-

quickly-not-maintainable” problem.

 It appears to be logical: Understand requirements. Design a system that conforms. Code
it. Test it.

 It worked to a point (we did and still do ship a lot of software using the water model).

 It reflects a continuing market reality —customers still do impose fixed-date/Fixed
requirements agreements on suppliers.

7

Iterative and Incremental Processes

 Failures of the waterfall model
 Increasing time-to-market pressures
 Advances in software development tools and technologies,

Drove the need for more innovative, discovery-based models

The iterative processes of the 1980s and 1990s

8

The Spiral Model

 An initial pass around the spiral is intended
primarily to understand requirements
and perform some validation of the
requirements before more serious
development begins.

 Thereafter, the model assumed another,
larger “spiral” intended to develop the
solution in largely sequential steps of
design, coding, integration, and testing.

 Follows a traditional sequential, waterfall
like process, but incorporates constant
feedback.

9

Requirements still have a strong
early placeholder.

The Rapid Application Development (RAD)

 Focuses on the iterative development and construction
of an increasingly capable series of prototypes.

 It generally stands for any number of lighter-weight
approaches, using fourth generation languages and
frameworks (such as web application frameworks),
which accelerate the availability of working software.

 From a requirements perspective, the assumption
was that if you could build it fast enough before the
requirements changed, you would be more
successful. And if you did get it wrong, the tools are
sufficiently facile and lightweight that you could
build it again faster than you could use traditional,
paper-based requirements discovery methods.

10

The Rational Unified Process (RUP)

 Widely adopted iterative and incremental software process model (more than a million
practitioners)

 Intended for large-scale applications where robustness, scalability, and extensibility are
mandatory

11

The Rational Unified Process (RUP)

 RUP recognized the necessary overlap of the various activities that occurred
during the life cycle phases of inception, elaboration, construction, and transition.

 For example, activities such as “requirements” were no longer relegated to a single
phase.

 Requirements activities were particularly intensive during the early inception and
elaboration phases (as illustrated by the size of the “humps” in the diagram).

 Requirements elaboration and requirements change are considered to be a
continuous process that occurs throughout the life cycle.

12

Requirements in Iterative Processes

No traditional big, upfront design (BUFD) requirements and design artifacts,
such as software requirements specifications, design specifications, and the
like.

 In its place, we see a “discovery based” approach.
Apply lighter-weight documents and models such as vision documents, use

case models, and so on, which are used to initially define what is to be built.
The iterative process is applied to more quickly discover the “real user

requirements” in early iterations, thus substantially reducing the overall risk
profile of the project.

13

Adaptive (Agile) Processes

 Adaptive models assume that:

With the right development tools and practices—it was simply more cost effective to
write the code quickly, have it evaluated by customers in actual use, be “wrong” (if
necessary), and quickly refactor it than it was to try to anticipate and document all the
requirements up front.

Examples of adaptive methods:

 Dynamic Systems Development Method (DSDM), Feature-Driven Development (FDD),
Adaptive Software Development, Scrum, Extreme Programming (XP), Open Unified
Process (Open UP), Agile RUP, Kanban, Lean, Crystal Methods, etc.

14

Agile Core Principles

 Highest priority is to satisfy the customer through early and continuous delivery
of valuable software.

Welcome changing requirements, even late in development.
 Deliver working software (primary measure of progress) frequently, from a couple

of weeks to a couple of months, with a preference to the shorter timescale.
 Business people and developers must work together daily throughout the

project.
 Build projects around motivated individuals: Give them the environment and

support they need, and trust them to get the job done.

15

Agile Core Principles

 Conveying information to and within a development team is face-to-face
conversation.

 Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

 Continuous attention to technical excellence and good design enhances agility.
 Simplicity is essential.
 The best architectures, requirements, and designs emerge from self-organizing

teams.
 At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly.

16

Agile Methods

Survey of most widely adopted agile methods. Fourth Annual State of Agile
Development Survey 2009

17

 The most widely adopted
agile methods are Scrum and
XP.

 Scrum (with or without
combination with XP) is now
applied in 74% of agile
implementations

Extreme Programming (XP)
18

Key practices of XP include the following:
1. A team of five to ten programmers work at one location with customer

representation onsite.
2. Development occurs in frequent builds or iterations, which may or may not be

releasable, and delivers incremental functionality.
3. Requirements are specified as user stories, each a chunk of new functionality

the user requires.
4. Programmers work in pairs, follow strict coding standards, and do their own

unit testing. Customers participate in acceptance testing.
5. Requirements, architecture, and design emerge over the course of the

project.

Scrum
19

Scrum is an agile project management method.
Work is done in “sprints,” which are timeboxed iterations of a fixed 30 days or

fewer duration.
Work within a sprint is fixed. Once the scope of a sprint is committed, no additional

functionality can be added, except by the development team.

Scrum
20

Scrum
21

 All work to be done is characterized as product backlog, which includes new
requirements to be delivered, the defect workload, and infrastructure and design
activities.

 A Scrum Master mentors the empowered, self-organizing, and self-accountable
teams that are responsible for delivery of successful outcomes at each sprint.

 A product owner plays the role of the customer proxy .
 A daily stand-up meeting is a primary communication method.
 Typical Scrum guidance calls for fixed 30 day sprints, with approximately 3

sprints per release, thus supporting incremental market releases on a 90 day time
frame.

Requirements Management in Agile is Fundamentally
Different22

 In the agile battle of date versus scope, the date wins. In other words, with agile
methods, we’ll fix two things, schedule and resources, and we’ll float the scope
(requirements).

Agile Optimizes ROI Through Incremental Value Delivery
23

 Sound economic principle:
The sooner we deliver a feature,

the sooner our customers will pay us for it

Waterfall Return on Investment Agile Return on Investment

Agile Optimizes ROI Through Incremental Value Delivery
24

 In waterfall, investment (cost) starts immediately and continues until delivery is
reached. No return on investment is possible until such time as all committed
requirements have been delivered to the customer, or the deadline is reached.

 In agile, value delivery starts with the first shippable increment. Therefore,
whether business value is measured in customer retention or incremental
pricing, return on investment starts then too.

 If we assume the investment is constant:
ROI $$ (agile) > ROI $ (waterfall)

Agile Optimizes ROI Through Incremental Value Delivery
25

 Previous figure doesn’t take into account the differential value of early market
features.

 Example: Early iPhone was $600 (few months of launch). Twenty four months
later, you could buy a much more powerful version for about $199, which is one
third the price.

 Any one entering the market later with a “me too” product had to compete at a
much lower price.

Moreover, they had to invest heavily to disrupt an incumbent market of early
adopters who are unlikely to switch as the iPhone makes its way into its users’
daily lives.

The value of any marketable feature decreases over time.

Agile Optimizes ROI Through Incremental Value Delivery
26

 To capture the maximum gross profit, you have to be in the market first, or at least early
enough to where the value/pricing differential is still in effect.

 ROI actually increases at a rate even faster than the linear rate implied by the previous figure.

