
User Stories and Agile Estimation

Dr. Jameleddine Hassine

ICS Department, KFUPM

jhassine@kfupm.edu.sa 

SWE 215: Software Requirements Engineering



Objectives

Learn how to model user stories

Learn user story estimation techniques 

2



Outline

User Story 

User Story Acceptance Criteria

Spikes

Relative estimation

Estimation using story points

Estimation using planning poker

Estimation using tabletop

Team velocity

Estimation using Ideal Developer Days (IDDs)

3



User Story Overview

 Basic definition of a user story:

A user story is a brief statement of intent that describes something the system 

needs to do for the user. 

 In XP, user stories are often written by the customer, thus integrating the customer 

directly in the development process

 In Scrum, the product owner often writes the user stories, with input from the 

customer, the stakeholders, and the team. 

 In practice, any team member with sufficient domain knowledge can write user 

stories, but it is up to the product owner to accept and prioritize these potential stories 

into the product backlog.

4



User Story Overview

 A user story captures a short statement of function on an index card

or perhaps with an online tool. 

 In simple backlog form, stories can just be a list of things the system 

needs to do for the user:

Log in to my web energy-monitoring portal

See my daily energy usage

Check my current electricity billing rate

 The user story provides the common language to build 

understanding between the user and the technical team (help

bridge the developer – customer communication gap)

5



User Stories are not Requirements

 They are different from use cases and SRS in many ways:

They are not detailed requirements specifications but are rather negotiable 

expressions of interest

They are short, easy to read, and understandable to developers, stakeholders, 

and users.

They represent small increments of valued functionality that can be developed 

in a period of days to weeks and can be safely discarded after implementation

(no need for maintenance).

They are relatively easy to estimate, so effort to implement the functionality can 

be rapidly determined.

6



User Story Form

Three elements of a user story:

Card represents two to three sentences used to 

describe the intent of the story (details remain to be 

determined).

Conversation represents a discussion between the 

team, customer product owner, and other 

stakeholders, which is necessary to determine the 

more detailed behavior required to implement the 

intent. 

Confirmation represents the acceptance test, which 
is how the customer or product owner will confirm 

that the story has been implemented to their 

satisfaction. 

7



User Story Voice

 It has the following form:

As a <role>, I can <activity> so that <business value>

<Role> represents who is performing the action or perhaps who is 

receiving the value from the activity.

<activity> represents the action to be performed by the system

<business value> represents the value achieved by the activity

 Example:

As a consumer (<role>), I want to be able to see my daily energy 

usage (<what I do with the system>) so that I can lower my energy 

costs and usage (<business value I receive)”

8



User Story Detail

 The details for user stories are conveyed primarily through 

conversation between the product owner and the team.

 In case more details are needed about the story, they can be 

provided in the form of an attachment (mock-up, spreadsheet, 

algorithm, etc.).

 Additional notes, assumptions, and acceptance criteria can be 

kept with the user story.

9



User Story Acceptance Criteria

 User Story:

As a consumer, I want to be able to see my daily energy usage so 
that I can lower my energy costs and usage”

 Example of acceptance criteria:

 Read DecaWatt meter data every 10 seconds and display on 
portal in 15-minute increments and display on in-home 
display every read.

 Read KiloWatt meters for new data as available and display on 
the portal every hour and on the in-home display after every 
read.

 Acceptance criteria are not functional or unit tests; rather, they are 

the conditions of satisfaction being placed on the system.

10



Epics

A Scrum epic is a large user story. 

Theme:

A “theme” is a collection of user stories. 

Sometimes it's helpful to think about a group of stories so 

we have a term for that. 

11

User Stories



Story Modeling with 

Index Cards

 Provides a powerful visual mean

 The physical size of index cards forces a text length limit, requiring the 

writer to articulate their ideas in just a sentence or two. This helps keep 

user stories small and focused. 

 Arrange them by feature (or theme), by time or iteration to help 

evaluate dependencies, understand logical sequencing.

12



Spikes

Spikes are a special type of story used to drive out risk and 

uncertainty.

Spikes may be used for basic research to familiarize the team 

with a new technology or domain.

 The story may contain significant technical risk, and the team 

may have to do some research to gain confidence in a 

technological approach.

13



Technical and Functional Spikes

 Technical Spikes:

Used to research various technical approaches in the 

solution domain. For example, a technical spike may be 

used to determine a build-versus-buy decision, to 

evaluate potential performance of a new user story, to 

evaluate specific implementation technologies.

 Functional spikes:

Used whenever there is significant uncertainty as to how 

a user might interact with the system. Functional spikes 

are often best evaluated through some level of 

prototyping, whether it be user interface mock-ups, 
page flows, etc.

14



Spikes

 Some user stories may require both types of spikes. Here’s an 

example:

As a consumer, I want to see my daily energy use in a histogram so 
that I can quickly understand my past, current, and projected 
energy consumption.

 In this case, a team might create two spikes:

1. Technical spike: Research how long it takes to update a customer 
display to current usage, determining communication 
requirements, bandwidth, and whether to push or pull the data.

2. Functional spike: Prototype a histogram in the web portal and 
get some user feedback on presentation size, style, and charting 
attributes.

15



Guidelines for Spikes

 Spikes should be the exception not the rule

 A spike story should be reserved for the more critical and larger 

unknowns.

 Like other stories, spikes are put in the backlog

 Spike results are different from a story, because they generally 

produce information, rather than working code. 

 A spike may result in a decision, prototype, proof of concept, or 

some other partial solution to help drive the final results. 

 The output of a spike is demonstrable, both to the team and to any 

other stakeholders. 

16



Project Estimation

Estimating provides substantial value added for several reasons:

Determining cost

Establishing prioritization

Scheduling and commitment

 In traditional project estimating:

Use a work breakdown structure to identify every last task, estimate each 

task, add the tasks up, build a Gantt chart, and predict the cost and 

schedule 

17



Estimating Scope with Story Points

 A story point is an integer number that represents an aggregation of a 
number of aspects, each of which contributes to the potential 

“bigness” of a story:

Knowledge: Do we understand what the story does?

Complexity: How hard is it to implement?

Volume: How much of it is there? How long is it likely to take?

Uncertainty: What isn’t known, and how might that affect our 

estimate?

 Story points are unit-less but numerically relevant (that is, a two-point 

story should expect to take twice as long as a one-point story).

18



Exercise Part 1: Relative Estimating

Think about the relative “bigness of things.”
19

German Shepherd

Labrador Retriever

Great Dane

Terrier
Poodle

St. Bernard

Dachshund

Bulldog



Relative Estimating

In this simple exercise, teams immediately struggle with ambiguity:

What does the instructor mean by bigness? Height, weight, mass, 

muscle, bite, attitude?

What kind of poodle is it? Standard poodle? Toy poodle? 

What scale should we use?

When in doubt, ask the product owner for clarification. 

20



Estimating Real Work with Planning Poker
21

• Need for some amount of 

preliminary design 

discussion is appropriate. 

• Estimate the items within 

a short timebox (maybe 

30 minutes).



Estimating Real Work with Planning Poker

Subtle aspects built into this estimating technique:

 The estimate comes from the team as a whole including developers 

and testers (e.g., fairly easy to code but really hard to test, and the 

reverse can also be true).

 The range of numbers (Cohn’s modified Fibonacci series, that is, 0, 1, 

2, 3, 5, 8, 13, 20, 40, 100) is cleverly designed. The lower range (0, 1, 2, 

3, 5, 8) is designed to help teams more precisely estimate small things

they understand well. However, the gaps in the sequence become 

larger as the size of the estimate increases, reflecting greater 

uncertainty.

 The expanded range (20, 40, 100): If the estimates reach this range, 

the story is too big for an iteration anyway and probably represents a 

feature or epic.

22



Estimating Real Work with Planning Poker

 Zero gives the teams a way to ignore small stories that can be 

implemented in just a few hours. 

 A consensus must be achieved before a final estimate is reached. By 

discussing only the high and low estimates, teams discover 

assumptions behind the estimates. 

 Since the cards are turned over all at once, this prevents individual 

estimators from being biased by the opinions of others prior to 

“showing their card.”

 It happens pretty fast. Guidance is to allow at most two to five 

minutes of discussion per item, so a team should be able to estimate 

ten to twenty stories in an hour or so, which is about the maximum 

amount of time a team should spend estimating. 

23



Exercise Part 2: Estimating Real Work with Planning Poker

24



Example: Estimating Real Work with Planning Poker
25



How Much Time Should We Spend Estimating?

More investment in estimating time 

rarely has a material effect on the 

actual estimates. 

 The results indicate that all three 

estimates were within a few percentage 

points of each other. 

26 Team 3



Estimating Caution: A Story within a Story

The estimates for “estimate the cubic volume of the room”:

 The first two team’s estimates for measuring the cubic volume of the room 

were quite similar (5/8 and 4/9). However, the third team’s estimate was 40 

Why the big difference?

 Simply, the three teams were in two different rooms. Teams 1 and 2 were in a 

modest-sized, cubic conference room with low ceilings. Team 3 was in a 

much larger space with high vaulted ceilings and a very complex geometry. 

The moral is as follows:

 Before you compare team estimates for theoretically comparable user stories, 

you must first understand what kind of room (software platform, programming 

languages, new team versus experienced team, computing resources, 

legacy versus green-field development, and so on) each team is in.

27



Tabletop Relative Estimation

 Requires face-to-face 

communication.

 The team discusses each story 

in the backlog and places the 

story on the table in a size 

position relative to other 

stories—small stories to the left, 

bigger stories to the right. 

 Stories of about the same size 

are stacked in columns. 

 It is expected that stories are 

shuffled after being discussed.

28



Tabletop Relative Estimation

 Each story can be seen with respect to all the other stories. 

 The stories aren’t really estimated yet; they are just placed in 

relative sizes. 

 To create the actual estimates, points can be assigned to columns.

 Visualization of the entire iteration enhances the team’s 

understanding of the work ahead.

29



From Scope Estimates to Team Velocity: Establishing Velocity

 A team’s velocity is simply how many points that team can complete 

in a standard iteration.

 The shaded areas represent stories that the team was unable to 

complete in the timebox. Team 1 completed 28 story pts in their 

iteration, and team 2 completed 32. In other words, team 1’s velocity 

is 28 points/iteration, and team 2’s velocity is 32 points per iteration.

30



Caveats on the Relative Estimating Model

Simple and reliable process that works quite well, subject to some 
caveats:

It is based on historical data and is predictive only to the extent 

that the future (new stories) looks like the past (stories already 

completed).

It is valid only to the extent that the team continues to have the 

same individuals. If you change the team members (for 

example, if we doubled the size of team), velocity will change 

dramatically, but it should stabilize after few iterations.

A team’s velocity cannot be compared to any other team. 
(Imagine if team 1 had used 2 as the smallest story and 

compared everything to that. Their apparent velocity would be 

twice as large, but the actual productivity would be the same.)

31



Increasing Velocity, Be Careful What You Ask For

 The goal is to continuously increase velocity while improving quality 

at the same time.

 The ability to achieve a certain amount of functionality in a time 

period, is not a complete measure of productivity.

 Velocity is only a tool by which teams manage and measure 

themselves. If management attempts to use velocity as a measure 

of team performance, the team will respond in one of three ways:

1. Continuously improve the team’s true productivity and agility in all 

aspects

2. Cut back on quality

3. Simply increase the size of the estimates.

32



From Velocity to Schedule and Cost: Estimating 

Schedule

 If we know size and velocity, we can calculate how long it will take 

to complete a story.

 Estimating cost: simply take the average burdened cost for a team 

and divide it by their velocity. That provides the cost per story 

point for that team. Then when the team estimates an arbitrary 

backlog, just multiply the cost per story point for that team by the 

total estimate for the backlog.

33



Problems with Estimating using story points

1. It isn’t so easy to understand by the team, and it’s even less easy to 
understand by their outside stakeholders.

2. It’s hard to get started. Until teams have done a few iterations, they have 
no idea how to predict what they can accomplish. 

3. Getting to schedule and cost estimates is very indirect. You have to work 
through relative estimates, establish velocity, and so on, and you have to 
understand the burden cost of each individual team, before you can 
translate a story point into a cost.

4. Teams occasionally struggle to adjust their velocity based on the 
availability of team members. For example, if a team member is only 
part-time for a sprint or a key resource is not available for a period, what 
is the anticipated velocity then?

5. Team velocities are not normalized. It’s not unusual for one small team to 
have a velocity of 40 points per iteration, while a team twice that size has 
a velocity of half that. That makes for some pretty uncomfortable 
discussions.

34



Estimating with Ideal Developer Days (IDDs)

A unit for estimating the size of product backlog items based on 

how long an item would take to complete if:

It were the only work being performed, 

there were no interruptions, 

and all resources necessary to complete the work were 
immediately available.

 The reason the estimates are called “ideal” developer days is 

that the team typically deprecates their capacity for planning, 

demos, management meetings, and other team and company 

overhead items. 

35



Estimating with Ideal Developer Days (IDDs)

 With IDDs, the team returns to a more traditional way to estimate their work. 

 The team looks at each story, discusses it with respect to the same 

complexity factors and then estimates how many IDDs it will take to do the 
story. 

There are many advantages to this method:

 Teams have always done it that way.

 It’s far easier to understand and explain.

 It’s easy to adjust velocity for sick leave, vacations, training, and so on.

36



Estimating with Ideal Developer Days

However, it has a disadvantages as well:

 Teams tend to get caught up when estimating in times. It’s too 

tangible and too meaningful. They feel they have to get it right.

 It’s far more personal and can be politically loaded. One developer 

might say a story takes two days, another four. Either could be 

correct—for them—but again, more interesting discussions result. 

And these discussions are not likely to be supportive of the team 

spirit we work so hard to achieve. 

Given these disadvantages, in balance, we prefer the relative 

estimating model.

37



A Hybrid Model

 Teams can proceed in large part with the relative estimating model. 

But we add two simple rules:

1. Estimate the smallest story, that can be done by one person in 

about a day, as a 1.

2. Only 8 IDDS per team member per two-week iteration. This leaves 

about 20% for planning, demoing, company functions, training, and 

other overhead.

38


