
Fundamentals of Scenarios

Dr. Jameleddine Hassine

ICS Department, KFUPM

jhassine@kfupm.edu.sa

SWE 215: Software Requirements Engineering

Lecture Objectives

Fundamentals of scenarios in Requirements Engineering

Main scenario types and their use in Requirements Engineering

UML Use Case Diagrams

UML Activity Diagrams

2

What is a Scenario ?

Goals alone do not sufficiently support requirements elicitation

Stakeholders typically find it easier to communicate their requirements in

terms of examples (e.g., interaction sequences) rather than abstract

intentions

“A scenario describes a concrete example of satisfying or failing to

satisfy a goal (or set of goals). It thereby provides more details about one

or several goals. A scenario typically defines a sequence of interaction

steps executed to satisfy the goal and relates these interaction steps to the

system context.”

3

Scenarios as a Means for Putting Requirements in

Context

 Scenarios are well suited for documenting context information.

 Kinds of context information can be characterized as follows

Actors: Persons or systems interacting with the system

Roles: Specific class of actors

Goals: Scenarios illustrate satisfaction of goals

Precondition: define conditions that must hold before executing the scenario

Post conditions: must hold within the system or context after executing the

scenario

Resources: special preconditions referring to persons, information, financial or

other material resources needed for a scenario

4

Positive and Negative Scenarios

Scenario can be positive or negative (regarding the satisfaction of a goal)

Positive scenario documents sequence of interactions leading to the

satisfaction of a goal

Negative scenario documents sequence of interactions failing to satisfy

a goal

Negative scenario may be allowed or forbidden

Positive and negative scenarios complement each other

5

Allowed Negative Scenarios

For example: a scenario in which an actor provides an incorrect input to the

system. Due to this incorrect input, the system cannot satisfy some goal, but still has

to react accordingly to the incorrect input.

Example: "Enable customers to withdraw cash from their account."

Chris inserts his bank card into the slot of the ATM (automated teller machine).

Chris enters his personal identification number and the amount to withdraw.

The ATM informs Chris that withdrawing the desired amount is not possible

because the amount exceeds his balance.

In the example, the stated goal is not satisfied due to an insufficient account

balance.

Forbidden Negative Scenarios (failure scenario)

 The failure to satisfy the related goals cannot be tolerated,

 For instance, because the respective goals are critical for the system and/or

its context.

The execution of the sequence is regarded as a system failure.

 The stakeholders must take appropriate measures to prevent the execution

of the sequence of interactions documented in a forbidden negative

scenario.

Forbidden Negative Scenarios

 Example: "Enable customers to withdraw cash from their account".

Jack inserts his bank card into the slot of the ATM. Jack enters his

personal identification number and the amount to withdraw. The ATM charges

the desired amount from Jack's account. When dispensing the money, the

Dispensing mechanism of the ATM fails.

In the scenario, the customer's account is charged although the ATM

Dispenses no money. Clearly this behavior of the ATM is not tolerable.

8

Descriptive, Exploratory and Explanatory Scenarios

 Descriptive scenario:

Describes process or workflow

Purpose: understanding its operations

 Exploratory scenario:

Explore and evaluate possible, alternative solutions in order to support the

selection of one alternative solution.

Provides background information and rationales for particular interaction

sequences

For example, ‘automatic braking manoeuvre’ …… there is a high risk of rear-

end collision. A rapid change of lane might cause the car to skid or

spin……………

9

Instance and Type Scenarios

 Instance scenario: Describes a concrete (existing or envisioned) sequence of

interactions between concrete actors

10

Carl wants to drive to Union Street in Plymouth. Carl uses the navigation system of his

VW Golf with license number ‘E-12’. Carl selects ‘enter destination’ in the main menu,

enters the destination ‘Union Street, Plymouth’, and presses the key ‘calculate route;.

 Type scenario: Abstracts from the concrete actors, inputs and outputs of a

specific sequence of interactions

The driver wants to drive to a destination using the navigation system. He enters the

destination. The system calculates the route from the current position of the car to the

entered destination.

Instance and Type Scenarios

 Mixed scenario

Important content described at instance level

Content not completely understood is described at instance level to

avoid errors resulting from early abstractions

Content that is well understood described at the type level

Conflicting or potentially conflicting content described at instance level

11

The driver activates the navigation system. The system asks the driver: ‘Please

state your destination or press the ‘enter destination’ button on the main menu. The

driver presses the ‘enter destination’ button and enters the destination manually.

After entering the destination the driver initiates the calculation of the route.

System-Internal, Interaction, and

Context Scenarios

 System-internal (type A) scenarios

Focus exclusively on system-internal interactions (interactions that occur

within the system boundaries)

 Interaction (type B) scenarios

Document sequences of interactions between system and its actors (persons

and systems in the context)

 Context (type C) scenarios

Document additional context information relevant for the system usage

12

System-internal scenarios (type A scenarios)
13

Interaction scenarios (type B scenarios)
14

Context scenarios (type C scenarios)
15

Primary versus Secondary Actors

 Primary Actors: The Actor(s) using the system to achieve a goal. The Use

Case documents the interactions between the system and the actors to

achieve the goal of the primary actor.

 Secondary Actors: Actors that the system needs assistance from to achieve the

primary actor’s goal.

[Cockburn 2006]

 Secondary actors may or may not have goals that they expect to be satisfied

by the use case, the primary actor always has a goal, and the use case exists to

satisfy the primary actor.

16

Example I

 A bank loan officer wants to review a loan application from a customer, and part

of the process involves a real-time credit rating check.

Use Case Name: Review Loan Application

Primary Actor: Loan Officer

Secondary Actors: Credit Rating System

We need to define the Secondary Actor because without the “Credit Rating System”

we cannot successfully complete the Use Case.

In other words, the goal of the Primary Actor is to successfully complete the Loan

Application, but they need the explicit “help” of the Secondary Actor (Credit Rating

System) to achieve this goal.

17

Example II

 A Human Resources manager wants to change the job code of an employee, and as

part of the process, automatically notify several other departments within the

company of the change.

Use Case Name: Maintain Job Code

Primary Actor: Human Resources Manager

Secondary Actors: None

This is where people sometimes get confused.

18

Example II (cont.)

We don’t include The “other departments” as Secondary Actors for the following

reasons:

1. The other departments are not required for the successful completion of the Use

Case

2. We are not expecting any response from the other departments (at least within the

bounds of the Use Case under discussion)

Within the detail of the Use Case Specification Main Success Scenario, we would

include something like: “The system sends a notification to the related department

heads (ref. Business Rule BR101)”

19

UML Use Case Diagram

Use Case Diagram (UCD)

 Built in early stages of development

 Purpose:

Model the context of a system

Capture the requirements of a system

 Diagram that shows a set of use cases and actors and their relationships.

 Actors may be connected to use cases only by association.

 An association between an actor and a use case indicates that the actor and the
use case communicate with one another, each one possibly sending and
receiving messages.

 However, they do not capture the full information of the actual use cases 

textual description is essential

21

UML: What is an Actor?

The Unified Modeling Language (UML) defines an Actor as:

“An actor specifies a role played by a user or any other system that

interacts with the subject”

Actors are NOT part of the system

 Include system components only if they are responsible for

initiating/triggering a use case.

For example, a timer that triggers sending of an e-mail reminder

 Include all user roles that interact with the system

Actors are not individual persons (e.g., John) but stimulates the system

to react (primary actor)

22

Actors in UML
23

In UML, an actor is represented as a stickman.

What is a use case?

A case of a use of the system/product

Tells a story: A use case is a description of a sequence of events involving

Interactions of a user with the system

A use case describes what a system does but it does not specify how it does

it.

A use case typically represents a major piece of functionality that is

complete from beginning to end.

 Is oriented toward satisfying a user's goal

24

http://en.wikipedia.org/wiki/Use_case

Basic elements of use case diagram

 Actor: is someone interacting with a use case (system function).

Named by a noun.

 Use Case: specifies system function (process – automated or

manual). Named by a verb (Do something)

 Each Actor must be linked to a use case, while some use cases

may not be linked to actors.

25

How do we describe use cases?

Textual or tabular descriptions

User stories (Agile process)

Use Case Diagrams

In the UML, a use case is represented as an oval.

26

Use Case Template
27 Use Case ID:

Use Case Name: Each use case is given a name.

Created By: Author Last Updated By:

Date Created: Last Revision Date:

Actors: Actors associated with this use case

Description: A brief description of the use case, typically one or two sentences.

Dependencies Description of whether the use case depends on other use cases, that is,

whether it includes or extends another use case.

Trigger: Describe how the use case is triggered.

Preconditions: One or more conditions that must be true at the start of the use case

Postconditions: Condition that is always true at the end of the use case if the main

sequence has been followed.

Normal Flow: Description of the main sequence of the use case

Alternative Flows: Description of alternative branches off the main sequence.

Frequency of Use: How frequent this use case is used

Special Requirements: Any special requirements

Assumptions: Any assumptions

Notes and Issues: Any extra notes and issues

Identifying Use Cases

What will the actor use the system for?

Describe the functions that the user will want from the system

Will the actor create, store, change, remove, or read data in the system?

Describe the operations that create, read, update, and delete information

Will the actor need to inform the system about external events and vice

versa?

Describe how actors communicate information about events that the system

must know about

Describe how actors are notified of changes to the internal state of the system

28

Elements of a Use Case Diagram
29

Relationship between Use Cases and Actors

Actors may be connected to use cases by associations, indicating that

the actor and the use case communicate with one another.

30

Relationship between Use Cases and Actors
31

Include Relationship

 The base use case explicitly incorporates the behavior of another use case at a

location specified in the base.

 The included use case never stands alone. It only occurs as a part of some

larger base that includes it.

 Reuse: Enables us to avoid describing the same flow of events several times

by putting the common behavior in a use case of its own.

32

Include Relationship

 A standard case linked to a mandatory use case.

Example: to Authorize Car Loan (standard use case), a clerk must run Check

Client’s Credit History (include use case).

Standard use case can NOT execute without the include case  tight

coupling.

 The standard UC includes the mandatory UC (use the verb to figure

direction arrow).

33

Extend Relationship

Extended use case is meaningful on its own, it is independent of the

extending use case.

Extending use case typically defines optional behavior that is not necessarily

meaningful by itself.

The extension takes place at one or more extension points defined in

the extended use case.

Extend relationship is shown as a dashed line with an open arrowhead

directed from the extending use case to the extended (base) use case. The

arrow is labeled with the keyword «extend».

34

http://www.uml-diagrams.org/common-behaviors.html#behavior
http://www.uml-diagrams.org/use-case-extend.html#extension-point

Extend Relationship
35

 The new functionality may open up a whole raft of possibilities and there is a

danger that the Alternative Flow spawns further sub flows.

 The Use Case may become difficult to manage. To avoid this the «extend»

relationship can be used to pull the Alternative Flow and its sub-flows out into a

new Use Case.

 The «extend» relationship says that we execute the base Use Case but when we get to

a specified point in the flow, if the right conditions are met, we perform some

different steps.

 Clearly this is very similar to an Alternative Flow. The advantage is that the

Alternative Flow and any dependent sub-flows have been moved into a separate Use

Case.

Extend Relationship: Example

 The condition of the extend relationship as well as the references to the extension

points are optionally shown in a comment note attached to the corresponding extend

relationship.

36

http://www.uml-diagrams.org/use-case-extend.html#extension-point
http://www.uml-diagrams.org/uml-core.html#comment

Basic and Alternative Flows

 Basic flow: Flow that represents the most common path (the “happy

path”) from start to finish through the use case.

 What actor’s event starts the use case?

 How does the use case end?

 How does the use case repeat some behavior?

 A number of alternate flows based on both regular

circumstances and exceptional events. The following questions

can help discover these paths.

 What else can the actor do?

 How will the actor react to optional situations?

 What variants might happen?

 What exceptions to the usual behavior may occur?

37

Example: Use Case description
38

There are other Use Cases

where we also need to record

the Customer’s details

Example: Include relationship
39

Example: Alternate flows
40

Example: Specify the Include in the base use case
41

Example: Special treatment
42

 Suppose we want to sell products that are made to order and require a

degree of customer specification.

 For these products we will need to record the customer’s additional

requirements, such as size and color.

 In this case we are adding something extra to the flow of the base Use

Case.

 We could do this as an Alternative Flow.

Example: Alternative flows
43

Example: Extend relationship
44

Example: the extension
45

Reusing Use Cases through Actor Generalization
46

 There is duplicate behavior in both the buyer and seller which includes "create an

account" and "search listings".

 Extract a more general user that has the duplicate behavior and then the actors will

"inherit" this behavior from the new user.

Generalization of Use Cases

The child use case inherits the behavior and meaning of the

parent use case.

 The child may add to or override the behavior of its parent.

47

Generalization of Use Cases
48

Concrete vs. Abstract Use Cases

 The “Buy Tickets” use case is

concrete because it can be

performed all by itself

 Abstract use cases cannot be performed

 Abstract use cases only provide partial

behavior and thus they need to be

implemented

 Described as Italic

Implementation Relationship

The generalization relationship is used to implement an abstract use case

Misuse Scenarios/Cases

 Called also “misuse case” describes a sequence of interactions in which a

hostile actor uses the system against the stakeholders' intentions.

 The execution of a misuse scenario represents a threat for the system, the

stakeholders, or other systems in the context.

Example:

Tom, the driver of another car, intentionally cuts in right ahead of Carl in

order to cause Carl's vehicle to perform a full braking. During this

braking maneuver Carl is injured.

A hostile actor knowingly causes a dangerous situation and thereby misuses

the car safety system.

Misuse Cases

 Models functional security requirements

 Valuable for hazard and threat analysis

 Misuse cases are negative use cases

 Actor is a hostile agent, called also mis-actor

 Extension of use case modeling

 Used for test cases generation

Drive the Car Steal the Car

Car ThiefCar Thief

threatens

Misuse Cases

 A misuse case model consists of:

 Misuse case diagram

 Misuse case descriptions

 The misuse case model makes use of include, extend, generalize and
association.

 Two new relations to be used in the diagram:

 Mitigates: A use case can mitigate the chance that a misuse case will complete
successfully.

 Threatens: A misuse case can threaten a use case, e.g. by exploiting it or
hinder it to achieve its goals.

53

Misuse Case Diagram

Misuse Cases Identify NFRs

 Use Cases are weak on NFRs

 Misuse Cases naturally focus on NFRs, e.g. Safety, Security

 Response is often a Subsystem Function, possibly to handle an Exception

Interplay of Use & Misuse Cases with Functional & Non-Functional Requirements

Driver

System Function

Misuse Case

Driver

Sub-System Function

'Misuser',

Source of Threat

'User'

Functional Requirements

Functional Requirements

Non-Functional Requirements

Misuse Cases Documentation

There are two different ways of describing a misuse case textually:

1. Embedded in a use case description template - where you add an extra

description field called Threats. This is the field where you fill in your misuse

case steps (and alternate steps). This is referred to as the lightweight mode of

describing a misuse case.

2. Use of a separate template. Inherit some of the field from use case description

(Name, Summary, Author and Date). It also adapts the fields Basic

path and Alternative path, where they now describe the paths of the misuse

cases instead of the use cases.

56

UML Activity Diagram

57

58
Activity Diagrams

Model the flow of activity/events from a start point to the finish

point detailing the many decision paths that exist in the progression

of activities/events contained in the activity.

May be used to detail situations where the logic is complex and

there are a lot of alternate flows (e.g., parallel processing may
occur in the execution of some activities).

 Typically used for business process modeling, for modeling the

logic captured by a single use case or usage scenario, or for

modeling the detailed logic of a business rule.

 If customers prefer diagrams over text.

59
Activity

An activity is shown as a round-cornered rectangle enclosing all

the actions, control flows and other elements that make up the

activity.

60
Actions

 An action represents a single step within an activity (one that is not

further decomposed within the activity).

 In Enterprise Architect (EA), it is referred to as “Atomic” action.

 Actions are denoted by round-cornered rectangles.

act Dynamic View

Perform Atomic

Action

61
Action Constraints

Constraints can be attached to an action (e.g., local pre- and

post-conditions).

62
Control Flow

 A control flow shows the flow of control from one action to the next.

Its notation is a line with an arrowhead.

 The control flow may have a condition attached to it.

act Dynamic View

Action1 Action2
[Condition = Value]

63
Initial Node

An initial or start node is depicted by a large black spot.

You can have more than one initial node.

64
Objects

 An object is shown as a rectangle.

 A Datastore is a persistent buffer node. A data store

is shown as an object with the «datastore» keyword.

 A Central Buffer Node is a transient buffer node. It has

the same behavior as a Datastore, but the stored

content will be destroyed when the activity ends –

when an Activity Final is reached.

act Dynamic View

«datastore»

DataStore

act Dynamic View

«centralBuffer»

CentralBufferNode

act Dynamic View

Object

65
Object Flows

 An object flow is a path along which objects or data can pass.

 An object flow is shown as a connector with an arrowhead

denoting the direction the object is being passed.

 An object flow must have an object on at least one of its ends.

 A shorthand notation for the above diagram would be to use input

and output pins.

66
Pins

 Actions can have inputs and outputs, through the pins

 Hold inputs to actions until the action starts, and hold the outputs of

actions before the values move downstream

 The name of a pin is not restricted: generally recalls the type of

objects or data that flow through the pin

Output pins
Standalone pin notations:

the output pin and the

input pin have the same

name and same type

Input pins

67
Decision and Merge Nodes

 Decision nodes and merge nodes have the same notation: a

diamond shape.

 They can both be named.

 The control flows coming away from a decision node will have guard

conditions which will allow control to flow if the guard condition is

met.

68
Fork and Join Nodes

 Forks and joins have the same notation: either a horizontal or vertical
bar. (the orientation is dependent on whether the control flow is
running left to right or top to bottom).

 They indicate the start and end of concurrent threads of control.

 A join node may have two or more incoming legs. For continuation it's
necessary that all reach the join node.

 Note: In Enterprise Architect, the type join/fork is selected in Properties  kind

69
Join Specification Feature

 If only some of the arriving tokens shall be sufficient to continue with the

synchronized path, UML provides the Join Specification (JoinSpec)

feature. By this you may specify a condition, sufficient for

synchronization.

act Activ ity17

Action 1

Action 2

Action 3

{joinspec=(a and b) or (a and c)}

Action4

a

b

c

Note: In Enterprise Architect, the type join/fork is selected in: Properties  joinSpec

70
Merge vs. Join Nodes

A join is different from a merge in that the join synchronizes two

inflows and produces a single outflow.

 The outflow from a join cannot execute until all inflows have

been received.

A merge passes any control flows straight through it.

 If two or more inflows are received by a merge symbol, the

action pointed to by its outflow is executed two or more times.

71
Flow Final Node

 Depicted as a circle with a cross inside

 Denotes the end of a single control flow

 A flow final destroys all tokens that arrive at it. It has no effect on

other flows in the activity.

 You can have more than one flow final node.

72
Activity Final Node

 Denotes the end of all control flows within the activity.

 Depicted as a circle with a dot inside.

 An activity may have more than one activity final node. The first

one reached stops all flows in the activity.

Flow Final vs. Activity Final
73

74
Partitions

 An activity partition is shown as either a horizontal or vertical swimlane.

 The partitions are used to separate actions within an activity into those
performed by the accounting department and those performed by the

customer.

75

Process Order

