SWE 215: Software Requirements Engineering

Fundamentals of Scenarios

Dr. Jameleddine Hassine
ICS Department, KFUPM

jhassine@kfupm.edu.sa

Lecture Objectives

» Fundamentals of scenarios in Requirements Engineering

» Main scenario types and their use in Requirements Engineering

» JML Use Case Diagrams

» UML Activity Diagrams

What is a Scenario ?

» (oals alone do not sufficiently support requirements elicitation

» Stakeholders typically find it easier to communicate their requirements Iin
of examples (e.g., interaction sequences) rather than abstract
entions

» “4 scenario describes a concrete example of satisfying or failing to
satisfy a goal (or set of goals). It thereby provides more details about one
or several goals. A scenario typically defines a sequence of interaction
steps executed to satisfy the goal and relates these interaction steps to the
system context. ”

Scenarios as a Means for Putting Requirements In
Context

» Scenarios are well suited for documenting context information.
» Kinds of context information can be characterized as follows

» Actors: Persons or systems interacting with the system

» Roles: Specific class of actors

®» Goals: Scenarios illustrate satisfaction of goals
» Precondition: define conditions that must hold before executing the scenario

®» Post conditions: must hold within the system or context after executing the
scenario

» Resources: special preconditions referring to persons, information, financial or
other material resources needed for a scenario

Positive and Negative Scenarios

= Scenario can be positive or negative (regarding the satisfaction of a goal)

® Positive scenario documents sequence of interactions leading to the
satisfaction of a goal

Negative scenario documents sequence of interactions failing to satisfy
a goal

» Negative scenario may be allowed or forbidden

» Positive and negative scenarios complement each other

Allowed Negative Scenarios

For example: a scenario in which an actor provides an incorrect input to the
system. Due to this incorrect input, the system cannot satisfy some goal, but still has

to react accordingly to the incorrect input.

Example: ""Enable customers to withdraw cash from their account."

Chris inserts his bank card into the slot of the ATM (automated teller machine).
ris enters his personal identification number and the amount to withdraw.

he ATM informs Chris that withdrawing the desired amount is not possible

because the amount exceeds his balance.

In the example, the stated goal is not satisfied due to an insufficient account
balance.

Forbidden Negative Scenarios (fallure scenario)

» The failure to satisfy the related goals cannot be tolerated,

» For instance, because the respective goals are critical for the system and/or
Its context.
»/The execution of the sequence Is regarded as a system failure.

The stakeholders must take appropriate measures to prevent the execution
of the sequence of interactions documented in a forbidden negative
scenario.

Forbidden Negative Scenarios

» Example: "Enable customers to withdraw cash from their account”.

Jack inserts his bank card into the slot of the ATM. Jack enters his

personal identification number and the amount to withdraw. The ATM charges
the desired amount from Jack's account. When dispensing the money, the
(sSpensing mechanism of the ATM fails.

In the scenario, the customer's account is charged although the ATM
Dispenses no money. Clearly this behavior of the ATM is not tolerable.

Descriptive, Exploratory and Explanatory Scenarios

» Descriptive scenario:

= Describes process or workflow

® Purpose: understanding its operations
» [Exploratory scenario:

Explore and evaluate possible, alternative solutions in order to support the
selection of one alternative solution.

®» Provides background information and rationales for particular interaction
sequences

® [or example, ‘automatic braking manoeuvre’ there iIs a high risk of rear-
end collision. A rapid change of lane might cause the car to skid or

Instance and Type Scenarios

® |nstance scenario: Describes a concrete (existing or envisioned) sequence of
Interactions between concrete actors

Carl wants to drive to Union Street in Plymouth. Carl uses the navigation system of his
VW Golf with license number ‘E-12°. Carl selects ‘enter destination’ in the main menu,
enters the destination ‘Union Street, Plymouth’, and presses the key ‘calculate route;.

Type scenario: Abstracts from the concrete actors, inputs and outputs of a
specific sequence of interactions

The driver wants to drive to a destination using the navigation system. He enters the
destination. The system calculates the route from the current position of the car to the
entered destination.

\\

Instance and Type Scenarios

» Mixed scenario

» |[mportant content described at instance level

» Content not completely understood is described at instance level to
avoid errors resulting from early abstractions

» Content that is well understood described at the type level

» Conflicting or potentially conflicting content described at instance level

The driver activates the navigation system. The system asks the driver: ‘Please
state your destination or press the ‘enter destination’ button on the main menu. The
driver presses the ‘enter destination’ button and enters the destination manually.
After entering the destination the driver initiates the calculation of the route.

System-Internal, Interaction, and
Context Scenarios

» System-internal (type A) scenarios

®» [ocus exclusively on system-internal interactions (interactions that occur
within the system boundaries)

» |nteraction (type B) scenarios

Document sequences of interactions between system and its actors (persons
and systems in the context)

» Context (type C) scenarios
» Document additional context information relevant for the system usage

System-internal scenarios (type A scenarios)

.- System-internal *-
£ -
y scenarios

y (type A scenarios)

¥

\1.\ Sakeholder

i
i
1 Other
4 system

Interaction scenarios (type B scenarios)

e - R T CER N S e e
— o o e == L
—

L= Interaction scenarios =~
(type B scenarios) ,f

L]
i
!

i

'| i

, @ i J— Lait®
' / Srac e
Sy ﬂ\'ﬂ'
i N‘ %ehamer ;

Context scenarios (type C scenarios)

Primary versus Secondary Actors

» Primary Actors: The Actor(s) using the system to achieve a goal. The Use
Case documents the interactions between the system and the actors to
achieve the goal of the primary actor.

» Secondary Actors: Actors that the system needs assistance from to achieve the
primary actor’s goal.

[Cockburn 2006]

® Secondary actors may or may not have goals that they expect to be satisfied
by the use case, the primary actor always has a goal, and the use case exists to
satisfy the primary actor.

Example |

» A bank loan officer wants to review a loan application from a customer, and part
of the process involves a real-time credit rating check.

» Use Case Name: Review Loan Application
» Primary Actor: Loan Officer
Secondary Actors: Credit Rating System

e need to define the Secondary Actor because without the “Credit Rating System”
we cannot successfully complete the Use Case.

In other words, the goal of the Primary Actor is to successfully complete the Loan
Application, but they need the explicit “help” of the Secondary Actor (Credit Rating
System) to achieve this goal.

Example 1

» A Human Resources manager wants to change the job code of an employee, and as
part of the process, automatically notify several other departments within the
company of the change.

®» (Jse Case Name: Maintain Job Code
Primary Actor: Human Resources Manager

» Secondary Actors: None

This i1s where people sometimes get confused.

Example Il (cont.)

We don’t include The “other departments™ as Secondary Actors for the following
reasons.

1. The other departments are not required for the successful completion of the Use
Case

2. \We-are not expecting any response from the other departments (at least within the
ounds of the Use Case under discussion)

Within the detail of the Use Case Specification Main Success Scenario, we would
Include something like: “The system sends a notification to the related department
heads (ref. Business Rule BR101)”

ML Use Case Diagram

Use Case Diagram (UCD)

= Built in early stages of development
= PUrpose:
=» \odel the context of a system

=» Capture the requirements of a system
lagram that shows a set of use cases and actors and their relationships.
Actors may be connected to use cases only by association.

» An association between an actor and a use case indicates that the actor and the
use case communicate with one another, each one possibly sending and
receiving messages.

» However, they do not capture the full information of the actual use cases 2>
textual description is essential

UML: What is an Actor?

The Unified Modeling Language (UML) defines an Actor as:

“An actor specifies a role played by a user or any other system that
Interacts with the subject”

tors are NOT part of the system

Include system components only if they are responsible for
Initiating/triggering a use case.

» [or example, a timer that triggers sending of an e-mail reminder
®» Include all user roles that interact with the system

» Actors are not individual persons (e.g., John) but stimulates the system
to react (primary actor)

AC

C

Buyer

tors in UML

In UML, an actor Is represented as a stickman.

",

Fraud
Agent
S Agent
i f Pay Pal
Seller

Key users

An actor can be a system
because the system
plays another role in the
context of your new
system and also interact
with other actors

What Is a use case?

» A case of a use of the system/product

» Tells a story: A use case Is a description of a sequence of events involving
Interactions of a user with the system

» A use case describes what a system does but it does not specify how it does

A use case typically represents a major piece of functionality that is
complete from beginning to end.

®» |s oriented toward satisfying a user's goal

http://en.wikipedia.org/wiki/Use_case

Basic elements of use case diagram

= Actor: IS someone interacting with a use case (system function).
Named by a noun.

» Use Case: specifies system function (process — automated or .
manual). Named by a verb (Do something) —

®» Fach Actor must be linked to a use case, while some use cases

ay not be linked to actors. /\

USER/ACTOR USER GOAL = Use Case Name
Order clerk Look up item availability

Create new order

Update order
Shipping clerk Record order fulfillment

Record back order Do something
Merchandising manager Create special promotion

Produce catalog activity report

How do we describe use cases?

= Textual or tabular descriptions
= Jser stories (Agile process)
» Jse Case Diagrams

In the UML, a use case Is represented as an oval.

D

lze Case

Use Case Template
UseCase: |

Use Case Name: Each use case is given a name.

Created By: Author Last Updated By:

Date Created: Last Revision Date:

Actors: Actors associated with this use case

A brief description of the use case, typically one or two sentences.

Description of whether the use case depends on other use cases, that is,
whether it includes or extends another use case.

Describe how the use case is triggered.

One or more conditions that must be true at the start of the use case

Postconditions: Condition that is always true at the end of the use case if the main
sequence has been followed.

m Description of the main sequence of the use case
Description of alternative branches off the main sequence.
How frequent this use case is used

Any special requirements

Any assumptions

Any extra notes and issues

Ildentifying Use Cases

» \\/hat will the actor use the system for?

= Describe the functions that the user will want from the system
= \\ill the actor create, store, change, remove, or read data in the system?
= Describe the operations that create, read, update, and delete information

Il the actor need to inform the system about external events and vice
versa?

= Describe how actors communicate information about events that the system
must know about

= Describe how actors are notified of changes to the internal state of the system

Elements of a Use Case Diagram

Connection between Actor and Use Case

| | Boundary of system

<<include==

-

Include relationship between Use Cases (one UC must
call another; e.qg., Login UC includes User Authentication UC)

<<pxtend==

]

Extend relationship between Use Cases (one UC calls

Another under certain condition; think of if-then decision points)

Relationship between Use Cases and Actors

» Actors may be connected to use cases by associations, indicating that
the actor and the use case communicate with one another.

/updating
\g\radesl./
o faculty

Relationship between Use Cases and Actors

Define your use case Actor Goals

Searches listings
for itam

Buyer

Note:

Association relationships only
show which actors interact with
the system to perform a given use
case.

Association relationship DO NOT
model the flow of data between
the actor and the system.

A directed association
relationship only shows if the
system or the actor initiates the
connection.

Seller

base) <include>> (g N
- \Jmetded

» The base use case explicitly incorporates the behavior of another use case at a
location specified in the base.

Include Relationship

-

» The included use case never stands alone. It only occurs as a part of some
larger base that includes it.

» Reuse: Enables us to avoid describing the same flow of events several times
putting the common behavior in a use case of its own.

upglatiug

grades mclude -

verifying

g{ﬂ&nt Id/
ﬁtpum % 111clude

{HE‘I anng

Include Relationship

» A standard case linked to a mandatory use case.

» [xample: to Authorize Car Loan (standard use case), a clerk must run Check
Client’s Credit History (include use case).

= Staridard use case can NOT execute without the include case = tight
coupling.

The standard UC includes the mandatory UC (use the verb to figure
direction arrow).

- - / N <<extend=> / o \
EXtend Re|atIOnSh|p \bage><T\6)fte1ld219

» Extended use case is meaningful on its own, it is independent of the
extending use case.

» Extending use case typically defines optional behavior that is not necessarily
ingful by itself.

» The extension takes place at one or more extension points defined in
e extended use case.

Extend relationship is shown as a dashed line with an open arrowhead
directed from the extending use case to the extended (base) use case. The
arrow Is labeled with the keyword «extend».

http://www.uml-diagrams.org/common-behaviors.html#behavior
http://www.uml-diagrams.org/use-case-extend.html#extension-point

Extend Relationship

» The new functionality may open up a whole raft of possibilities and there is a
danger that the Alternative Flow spawns further sub flows.

» The Use Case may become difficult to manage. To avoid this the «extend»
relationship can be used to pull the Alternative Flow and its sub-flows out into a

> The «extend» relationship says that we execute the base Use Case but when we get to
specified point in the flow, if the right conditions are met, we perform some
different steps.

Clearly this is very similar to an Alternative Flow. The advantage is that the
Alternative Flow and any dependent sub-flows have been moved into a separate Use
Case.

Extend Relationship: Example

L «extend» 7 Get Help On

Registration use case is complete and meaningful on its own.
It could be extended with optional Get Help On Registration use case,

ition of the extend relationship as well as the references to the extension
oings are optionally shown in a comment note attached to the corresponding extend
lonship.

Condition: {user clicked help link}
extension point: Registration Help

!
Registration ,«j
extension points —é. _ Get Help On
Registration
Registration Help «extends N\ 9

Registration use case is conditionally extended by Get Help On Registration
use case in extension point Registration Help.

http://www.uml-diagrams.org/use-case-extend.html#extension-point
http://www.uml-diagrams.org/uml-core.html#comment

Basic and Alternative Flows

» Basic flow: Flow that represents the most common path (the “happy

path”) from start to finish through the use case.
Start Use Case

®» \\/hat actor’s event starts the use case? Basic Flow
=» How does the use case end?
Alternate Flow 3

» How does the use case repeat some behavior?

r of alternate flows based on both regular
circuynstances and exceptional events. The following questions
can/help discover these paths.

What else can the actor do? Aternate Flow 4
= How will the actor react to optional situations? [

» \\/hat variants might happen? End Use Case

Alternate Flow 1

Alternate Flow 2

End U;e Case

=» \\/hat exceptions to the usual behavior may occur?
End Use Case

Example: Use Case description

Example 1 cont’d
Use Case: “Take Customer Order”
Basic Flow:
1. Actor enters Customer details
. Actor enters code for product required
System displays Product details
Actor enters quantity required
Actor enters Payment details
System saves Customer Order

Take
Customer
Order

Sales

Assistant

oo ko

Alternative Flows:
There are other Use Cases

[multiple products]
where we also need to record , _
e tomer’s details After step 4, when the Actor enters the quantity required,

Repeat steps 2 to 4 for additional Products
Resume at step 5, to enter Payment details

Example: Include relationship

Take
Customer
Order
Sales ginclude»
Assistant
Identify
Customer
Return Faulty
Goods «include»

Example: Alternate flows

Example 2 - cont’'d
Use Case: “Identify Customer”
Basic Flow:
1. Actor enters search criteria, surname and postcode
System displays matching Customers
Actor selects Customer
System displays Customer details
Actor confirms Customer

A

Alternative Flows:
[new customer]

After step 2, when the System does not display the required Customer, Actor creates new
Customer,

1. Actor selects to add new Customer
2. Actor enters Customer details
Resume at step 5, to confirm Customer

Example: Specify the Include in the base use case

Example 2 - cont’'d
Use Case: “Take Customer Order”
Basic Flow:
1. Actor records Customer details, include (ldentify Customer)
Actor enters code for Product required
System displays Product details
Actor enters quantity required
Actor enters Payment details
System saves Customer Order

SO hoN

Alternative Flows:

[multiple products]

After step 4, when the Actor enters the quantity required,
Repeat steps 2 to 4 for additional Products

Resume at step 5, to enter Payment details

Example: Special treatment

» Suppose we want to sell products that are made to order and require a
degree of customer specification.

» For these products we will need to record the customer’s additional
requirements, such as size and color.

»/In this case we are adding something extra to the flow of the base Use
Case.

> We could do this as an Alternative Flow.

Example: Alternative flows

Example 3
Use Case: “Take Customer Order”
Basic Flow:
1. Actor records Customer details include (ldentify Customer)
Actor enters code for product required
System displays product details
Actor enters quantity required
Actor enters payment details
System saves Customer Order

@ ok wN

Alternative Flows:

[multiple products]

After step 4, when the Actor enters the quantity required,
Repeat steps 2 to 4 for additional products

Resume at step 5, to enter payment details

[customer specified product]

At step 3, when the System displays the Product details, if the product requires customer
specified features,

1. Actor enters customer specified requirements, such as size and colour

Resume at step 4, to enter quantity required, until step 6 where the Customer Order is
saved.

At this step the additional customer-specific product details must also be saved.

Example: Extend relationship

Sell
Customer-Specific
Product

wextend»

Take
Customer
Order

Sales
Assistant

gincludex»

Identify
Customer

Return Faulty

Goods «include»

Example: the extension

Example 4 - cont'd
Use Case: "Sell Customer-Specific Product”

Basic Flow:

At step 3, when the System displays the Product details, if the product requires customer
specified features,

1. Actor enters customer specified requirements, such as size and colour

Resume at step 4, to enter quantity required, until step 6 where the Customer Order is
saved.

At this step the additional customer-specific product details must also be saved.

Reusing Use Cases through Actor Generalization

» There iIs duplicate behavior in both the buyer and seller which includes "create an
account" and "search listings".

» Extract a more general user that has the duplicate behavior and then the actors will
"Inherit" this behavior from the new user.

Generalization of Use Cases

®» The child use case inherits the behavior and meaning of the
parent use case.

» The child may add to or override the behavior of its parent.

Conri)

4311 deua\ /gmdmte\

I\e Qlatlﬂflly {glstl fltu:y

Start: Model concrete use cases to
represent different actor goals.

Travel Website

Book a Flight

X

Customer

Book a Hotel

Generalization of Use Cases

Optimize: Generalize the concrete use cases to a generalization use case to
represent the core booking process. Generalize the associations to an association
on the generalization use case, so the specialization use cases inherit it.

Travel Website

Name of abstract

X

Customer

Generalization -
relationship

use case in italics

Book a Trip
Component

Book a Flight

Book a Hotel

Name of concrete use cases in straight font

Note: From a Customer’s point of view, nothing has changed. Any Customer still
sees only the concrete (public) specialization use cases, not the abstract (private)
generalization use case. This is about model optimization and nothing else.

®» The “Buy Tickets” use case 1s
concrete because it can be
performed all by itself

5

e

‘Y
@n Sale m@

\

Concrete vs. Abstract Use Cases

» ADstract use cases cannot be performed

» Apstract use cases only provide partial
behavior and thus they need to be
Implemented

®» Described as Italic

Poarform Transaction

Implementation Relationship

» The generalization relationship is used to implement an abstract use case

Perforn Tm:m@
v\

@hase Using Hockey Team Card

@hase With Credit Card

Misuse Scenarios/Cases

» Called also “misuse case” describes a sequence of interactions in which a
hostile actor uses the system against the stakeholders’ intentions.

» The execution of a misuse scenario represents a threat for the system, the
stakeholders, or other systems in the context.

xample:

Tom, the driver of another car, intentionally cuts in right ahead of Carl in

order to cause Carl's vehicle to perform a full braking. During this
braking maneuver Carl is injured.

A hostile actor knowingly causes a dangerous situation and thereby misuses
the car safety system.

Misuse Cases

threatens
< Drive the Car > 4 Steal the Car A

Car Thief

odels functional security requirements

= \aluable for hazard and threat analysis

= Misuse cases are negative use cases

= Actor Is a hostile agent, called also mis-actor
= Extension of use case modeling

= Used for test cases generation

Misuse Cases

= A misuse case model consists of:
= Misuse case diagram
= Misuse case descriptions

= The misuse case model makes use of include, extend, generalize and
association.

Wo new relations to be used in the diagram:

= Mitigates: A use case can mitigate the chance that a misuse case will complete
successfully.

= Threatens: A misuse case can threaten a use case, e.g. by exploiting it or
hinder it to achieve its goals.

Misuse Case Diagram

1 Alert system
|
|

|

|

- administraton(s)
"ﬁ.hh . LY
<<
~a inchude>
Il
‘ \\ Hh
I My ‘"h.
. \\ H'h
<::includlei=~:- . ﬂthreﬁbre:
\ T;--. — ‘_.:_r_nﬂ];gate}}
| RN e ——
| “"’h \\
I e S
™
t cemiigatng_ <<threden>
T
- e
Authorized user | o —— ~e
| {{exnﬁlﬁ'iﬂl‘.r--.___
I
<<ifclude>>
1 ...—-"-
| _,.--"'"
_ —=—<tMiligate>>
Identify and -

-

authenticate user

Denial of service
attack

Man-in-the-
middle-attack

!

Malicious user

Misuse Cases Identify NFRs

-——

- =~
& —(System Function > ™
\
-7

'User' ey, \
__________ - Y
— . €
: Functional Requirements L=~
I | / &
/ ~ .
// \\ .o '‘Misuser’,
J (mmm e N~_ ___ Source of Threat
.) [
" | Non-Functional Requirements !
-~ I _____________________
N // N
Qb-System FunctloD \
—_ \
~=7 \
- / \
r————————=- - f= =19 \\
| Functional Requirements : <

Interplay of Use & Misuse Cases with Functional & Non-Functional Requirements

» Jse Cases are weak on NFRs
» Misuse Cases naturally focus on NFRs, e.g. Safety, Security
» Response Is often a Subsystem Function, possibly to handle an Exception

Misuse Cases Documentation

There are two different ways of describing a misuse case textually:

1. Embedded in a use case description template - where you add an extra
description field called Threats. This is the field where you fill in your misuse
case steps (and alternate steps). This is referred to as the lightweight mode of

describing a misuse case.

Use of a separate template. Inherit some of the field from use case description
(Name, Summary, Author and Date). It also adapts the fields Basic

path and Alternative path, where they now describe the paths of the misuse
cases Instead of the use cases.

ML Activity Diagram

Activity Diagrams

» Model the flow of activity/events from a start point to the finish
point detailing the many decision paths that exist in the progression
of activities/events contained in the activity.

» May be used to detall situations where the logic is complex and
there are a lot of alternate flows (e.g., parallel processing may
occur in the execution of some activities).

Typically used for business process modeling, for modeling the
logic captured by a single use case or usage scenario, or for
modeling the detailed logic of a business rule.

®» |f customers prefer diagrams over text.

Activity

®» An activity is shown as a round-cornered rectangle enclosing all
the actions, control flows and other elements that make up the
activity.

ad Activity /

¢ ™y

Auctivwity

Actions

®» An action represents a single step within an acfivity (one that is not
further decomposed within the activity).

® |n Enterprise Architect (EA), it is referred to as “Atomic” action.

» Acfions are denoted by round-cornered rectangles.

act Dynamic View/

4)

Perform Atomic
Action

Action Constraints

» Constraints can be attached to an action (e.g., local pre- and
post-conditions).

ad Conditions /J

wlocalPreConditions _1 wlocalPrecondition»

[A drink is selected that the - all info was provided
vending machine contains} - order was pre-paid

|
i
'

i
;
' Process
Dizpansa Order
Drirle i

dalocalPostconditions

«localPostConditions I - order is complete
and verified

{The wending machine
dispensed the drink selected}

Conirol Flow

» A control flow shows the flow of control from one action to the next.
lts notation is a line with an arrowhead.

ad Activity Edge

Send Accept
Fayment Fayment

The control flow may have a condition attached to it.

act Dynamic View /

Actionl — Action2
[Condition = Value]

Initial Node

» An initial or start node is depicted by a large black spot.

=» You can have more than one initial node.

ad lmitial -

Farfarm
Action

O bjec.l.s act Dynamic View

» An object is shown as a rectangle. ‘ ‘omecti\

act Dynamic View/

» A Datasfore is a persistent buffer node. A data store

IS sown as an object with the «datastoren keyword. «datastore»

DataStore

A Cenftral Buffer Node is a tfransient buffer node. It has

act Dynamic View /

the same behavior as a Datastore, but the stored

content will be destroyed when the activity ends - «cypire/BUISE
. . . CentralBufferNode
when an Activity Final is reached.

Object Flows

» An object flow is a path along which objects or data can pass.

®» An object flow is shown as a connector with an arrowhead
denoting the direction the object is being passed.

=d Object Flow /)
Send inylce Make
Irvwai e Faymert

An object flow must have an object on at least one of its ends.

» A shorthand notation for the above diagram would be to use input
and output pins.

ad Object Flow (alt) /

Send
Iy ol |

. Make
Fayrnernt

mwo e I i

Pins

®» Acfions can have inputs and outputs, through the pins

» Hold inputs to actions unfil the action starts, and hold the outputs of
actions before the values move downstream

®» [he name of a pin is not restricted: generally recalls the type of
jects or data that flow through the pin

fiaime Order Order

name
Fill Ship
D (&

Output pins Input pins

Standalone pin notations:

N !

| o name | = the output pin and the

P— ﬂm/é input pin have the same

> = name and same type
—

Decision and Merge Nodes

®» Decision hodes and merge nodes have the same notation: @
diamond shape.

» They can both be named.

» The confrol flows coming away from a decision hode will have guard
itions which will allow control to flow if the guard condifion is

ad Decizion or Merge /}

[condition is true]

Action of

Fork and Join Nodes

» [Forks and joins have the same notation: either a horizontal or verfical
bar. (the orientation is dependent on whether the conftrol flow is
running left to right or top to bottom).

» They indicate the start and end of concurrent threads of control.

ad Fork and Join /

Comcurrent

I i, Action 1)
o
Comcurrent

L Action 2|

» Note: In Enterprise Architect, the type join/fork is selected in Properties = kind

Join Specification Feature

®» |f only some of the arriving tokens shall be sufficient to confinue with the
synchronized path, UML provides the Join Specification (JoinSpec)
feature. By this you may specify a condition, sufficient for
synchronization.

act Activityl?/

l : l b
Action 2

C

Note: In Enterprise Architect, the type join/forkis selected in: Properties = joinSpec

>‘| Action4 l

{joinspec=(a and b) or (a and c)}

Merge vs. Join Nodes

® A join Is different from a merge in that the join synchronizes two
inflows and produces a single outflow.

» The outflow from a join cannot execute until all inflows have
been received.

A merge passes any control flows straight through if.

® |f two or more inflows are received by a merge symbol, the
action pointed to by its outflow is executed two or more fimes.

Flow Final Node

ad Flowr Final /
Clo=e
Order

» PDepicted as a circle with a cross inside

Denotes the end of a single control flow

» A flow final destroys all fokens that arrive at it. It has no effect on
other flows in the activity.

=» You can have more than one flow final node.

Activity Final Node

ad Activity Final

Close :{9
Order jl

notes the end of all control flows within the activity.

Depicted as a circle with a doft inside.

An acftivity may have more than one activity final node. The first
one reached stops all flows in the activity.

Flow Final vs. Activity Final

Ship
Drder

e

Send Add Account
[nvaice FPayable

Feceive
Qrder

[accepted | _ _
Fill ship
Order Order
Receive > e
Jrder ')

‘ M atify
. Customer
[rejected |

WAL N

Line 1 TIEHE’ES

Choose
h i e

Wit in By
Line 2 Tickets

Partitions

®» An activity partition is shown as either a horizontal or vertical swimlane.
» [he partitions are used to separate actions within an activity into those

performed by the accounting depariment and those performed by the
customer.
ad Partitions
g Ser!d

Inwoice

Make
Fayrent

Custorer

Process Order

i

Overnight
Delivery

merge

Receive
Order

W
Regular

_, flowledge

ke
/
Receive
Payment

activity final

-"'jpin

Fulfillment Customer Service Finance
Receive
Order
W
Y
Fill Order Send
Invoice
W
Deliver Receive
Order Payment
Y
W
Close
Order

